
Automated Source-code-based Testing of Object-Oriented Software

Ralf Gerlich, Rainer Gerlich
Dr. Rainer Gerlich System and Software Engineering

BSSE
Immenstaad, Germany

e-mail: Ralf.Gerlich@bsse.biz,
Rainer.Gerlich@bsse.biz

Carsten Dietrich
Deutsches Zentrum für Luft- und Raumfahrt e.V.

(DLR)
Bonn, Germany

e-mail: Carsten.Dietrich@dlr.de

Abstract—With the advent of languages such as C++ and Java
in mission- and safety-critical space on-board software, new
challenges for testing and specifically automated testing arise.
In this paper we discuss some of these challenges, consequences
and solutions based on an experiment in automated source-
code-based testing for C++.

Keywords-automatic test data generation, C++, unit testing,
robustness testing, testability, Java, object orientation, safety,
security

I. INTRODUCTION
Automatic source-code-based testing is a method for

software testing in which the procedures and functions of a
software package are automatically stimulated based on the
interfaces visible in the source code.

Fully automatic generation of the test environment, test
stimuli, proper instrumentation of the source code and
automatic reporting of observations in condensed form
allows massive stimulation of software with millions of
stimuli, while keeping the number of reported anomalies
sufficiently low, thereby increasing the probability of
occurrence and detection for sporadic faults.

Due to automatic instrumentation of the software
package under test and the test environment, functional faults
can be detected even if no application-specific oracle is
available to individually check test stimuli and the
corresponding software reaction for compliance with the
specification[1].

The effectiveness and efficiency of this approach is
strongly dependent on the approach selected for generation
of input stimuli.

While on the one hand side, the profile of the stimuli
generated should be as close as possible to the operational
profile in order to have representative evidence of the
software working under operational conditions, robustness
testing by way of injecting invalid values or values normally
not or rarely occurring during operation should not be left
out.

It is therefore important to properly balance these two
aspects when generating stimuli. However, it can be very
difficult or even impossible for a test tool to infer the
programmer's intent or the requirements regarding valid and
invalid values from the source code, except if sufficient
annotations for this explicit purpose are present.

However, domain-specific heuristics may be applied in
order to tune the generation of stimuli towards the most
probable intent, neither under- nor overemphasizing
robustness testing.

A considerable body of experience on all of these aspects
in the space-software domain exists for purely imperative
languages such as Ada[2] and C[1][3], but with the advent of
languages such as C++ and Java in space software, an
extension towards object-orientation is necessary.

Many of the issues discussed in this paper in context of
automated testing of C++ software are also valid for
conventional, manual testing of C++ source code. Although
there are some issues for automated testing, the discussion
shows that the complexity of testing C++ software demands
automation, e.g. to tackle the large number of combinations
significantly increased by O-O concepts such as overloading
and dynamic dispatch, and to obtain sufficient visibility on
what is really executed.

The paper is structured as follows: First we define the
aspects of object orientation which will be subject of the
discussion in this paper, and discuss some advantages,
disadvantages and issues of object-orientation in general and
of C++ in particular in context of on-board space software.

This is followed by an exposition of challenges with
regard to automated source-code-based testing that we have
encountered so far, followed by a presentation of solutions
and/or consequences of these challenges.

Then we present the results of applying the current tool
version to representative space on-board software written in
C++, followed by our conclusions from the analysis and
experience.

II. THE FAST PROCESS
The FAST (Fully/Flow-optimised Source-code-base

Testing) process was presented in detail already in[1] in
context of C software. Therefore only the most important
features as of relevance for testing of object oriented
software shall be discussed here.

Massive stimulation: As the process takes the information
required for generation of stimulation data and of the test
environment from the source code and other machine-
readable information – as far as available, a huge number of
stimuli can be injected into a FUT (Function-Under-Test).

Fault injection: The stimuli may represent either valid or
invalid data.

class A {
public:
 A(int aVal):val(aVal) {}
 int getVal() const { return val; }
protected:
 int val;
};
int foo(A* obj) {
 return obj->val; // error
}
int bar(A* obj) {
 return obj->getVal(); // OK
}
class B: public A {
public:
 B(int aVal): A(aVal) {}
 int getValTimesTwo() const {
 return 2*val;
 }
}

Fig. III-2 Encapsulation and Data Hiding

class A {...};
class B: public A {...};
int foo(A* obj);
int bar() {
 A* obj = new B;
 return foo(obj);
}

Fig. III-1Subtype Polymorphism

Observation of properties: When executing a FUT the
process can observe the properties, especially anomalies, and
record them using given algorithms.

Filtering of Information: The observed information is
filtered according to given criteria, thereby reducing the
amount of information to be evaluated manually.

Generation of test drivers for regression testing:
According to given criteria the process can select certain
tuples of input and output data for regression testing and
generate the test drivers and their execution environment.

Massive stimulation in context of fault injection
significantly raises the probability of fault activation.
Information filtering reduces the amount of information, and
provides lists on unique anomaly patterns. Therefore
sporadic faults have been detected although the software-
under-test passed already the verification procedures as
required by the standards for a given criticality level.

A recent publication[4] on automation in context of Java
suggests that automation does not bring an advantage when
the number of injected stimuli is limited to the order of
magnitude which can be reached by manual generation of
stimuli. This is not surprising as the generated stimuli are
equivalent to the manually generated ones – more or less.

An issue arises in context of “design-by-contract”, when
the information on the contracts is not available in machine-
readable form. Then a FUT may be exposed to invalid data,
i.e. to data which may not occur under normal conditions of
system operation, while the test automaton considers such
data as valid as they comply with the prototype of the FUT.
Such events are called “false positives” as they suggest a
fault while it is not – provided that the related contract is
always fulfilled at time of operation.

In on-board software the concept “design-of-contract” is
applied in many cases, and it is a major base to achieve safe
operations, thereby relying on a cooperative user of a FUT.

However, in context of security such a user is not
cooperative and the so-called false positives are just the
holes through which a hacker can penetrate into the system,
i.e. it is desirable to know about.

C++ may be applied to applications where security is of
higher interest. Due to use of UML and design patterns
allowing a higher degree of reuse, C++ is increasingly used
in the space domain.

Both trends make it reasonable to extend the FAST
process from C to C++.

III. OBJECT ORIENTATION CONTEXT
In this paper we will mainly discuss object-orientation

based on the following features, which are present in Java
and C++:

• Subtype polymorphism/inheritance,
• encapsulation (“data hiding”),
• abstraction, and
• dynamic dispatch.

Subtype polymorphism is the notion that a datatype S –
the subtype – is related to some datatype T – the supertype –
by a notion of substitutability, i.e. wherever an element of
type T is applicable, an element of type S can be used as

well. This applies specifically to function and procedure
parameters.

An example is shown in Fig. III-1. Here a class A and a
subclass B of Class A are declared. The function foo accepts
pointers to instances of A as parameter. Due to the
substitution principle, instances of class B may be used in
any place where an instance of A is expected, so that foo also
has to accept instances of B.

Encapsulation typically means both the bundling of
methods and object data, as well as the concept of hiding the
object state from program elements outside the object class
or subclasses. The latter concept is also known as “data
hiding”.

An example for encapsulation and data hiding is shown
in Fig. III-2. Here a class A is declared, containing data – in
the form of data member val – and operations – in the form
of a constructor accepting a single integer parameter and a
so-called getter method getVal returning the value of val.

The member val is declared to be protected, meaning that
it is accessible only from inside the class or – under certain
circumstances – its subclasses.

Therefore, val cannot be accessed directly from the
function foo. However, the getter-function getVal is declared
public, so it is accessible from outside the class, so that the
function bar can use it.

Access from subclasses is shown in the presented
subclass B of A, where val is accessed directly inside the
member method getValTimesTwo.

Direct access by subclasses can be avoided by declaring
members to be private. In that case, the member can only be
accessed by the declaring class itself.

Abstraction is the representation of an idea or concept
without specification of its concrete implementation. In most
object oriented languages this is supported by specification
of methods by interface only, without providing an
implementation. Classes containing such interface-
declarations – called “pure virtual” methods in C++ – are
called “abstract classes”. The actual implementations are
instead provided by concrete subclasses.

An example for abstraction is shown in Fig. III-3. Here,
Class A declares a “pure virtual” method doSomething –
indicated by the keyword virtual and the “= 0” after the
method prototype. Function foo is working on instances of
Class A and as A declares the method, foo can make use of
that declaration.

However, it is not possible to create instances of A
directly. For this, a concrete class implementing
doSomething is required. In the example, this class is
represented by Class B, a subclass of Class A. The lack of “=
0” after the prototype in Class B indicates that B actually
implements doSomething. Therefore the function bar can
create an instance of B and pass it to foo.

The function foo itself, however, is completely unaware
of what concretisation of A it will be passed. The developer
has to ensure that the implementation in Class B actually
implements the guarantees regarding its behaviour that foo
expects to hold.

Dynamic dispatch is the process by which the
implementation of a polymorphic operation is selected at
runtime. This is necessary as due to the substitution
principle, a variable of object type A may at runtime hold an
object of a subclass B of A, where the implementation of the
respective operation in B may differ from that in A.

An example is shown in Fig. III-4. Here Class A declares
two member methods, getSomething and calcSomething. The
latter is declared virtual, indicating that it is subject to
dynamic dispatch, while the former is not.

Class B is a subclass of A, providing its own
implementations of these two functions. Again,
calcSomething is subject to dynamic dispatch, not primarily
because it is declared virtual, but because it overrides a

method in A that is declared virtual. The method
calcSomething in Class A is said to “inherit” the virtual
attribute from the method with the same signature in Class A.

Whenever a method is invoked on an instance of a class,
the method of invocation depends on whether the method is
declared to be subject to dynamic dispatch or not.

In the latter case, the implementation to be invoked is
determined from the type of the expression it is invoked on.
This type is determined at compile time. In the example, the
call to getSomething in function foo always resolves to the
implementation of getSomething in Class A, and never to the
implementation in Class B, even though bar actually passes
an instance of B to foo.

If the method is declared to be subject to dynamic
dispatch, the implementation to be used is determined at
runtime based on the type of the actual instance referred to.
As a consequence, the call to calcSomething will be resolved
to the implementation of that method in Class B when foo is
called with an instance of B, such as, e.g., from function bar.

IV. C++ IN SPACE ON-BOARD SOFTWARE
Object-oriented languages in general and C++ in

particular have some advantages and some disadvantages
regarding the implementation of space on-board software
compared to imperative languages in general and C in
particular.

For example, encapsulation and inheritance allow for
stronger modularisation, increase of software reuse and
provide a very basic mechanism for fault isolation.

Classes can enforce data consistency by shielding data
from direct access and allowing access only through method
interfaces ensuring that invariants hold when control is
passed back to the caller. Verification of this enforcement
mainly has to consider the contents of a class. However, as
behaviour may be modified by sub-classing, verification still
has to be repeated for each new subclass.

Also, the object-oriented model coincides with that of
many wide-spread modelling concepts such as UML, which
may ease the transition from model to implementation.

class A {
public:
 virtual void doSomething() = 0;
};
class B: public A {
public:
 virtual void doSomething();
}
void foo(A* obj) {
 return obj->doSomething();
}
int bar() {
 A* obj = new B;
 return foo(obj);
}

class A {
public:
 int getSomething();
 virtual int calcSomething();
};
class B: public A {
public:
 int getSomething();
 virtual int calcSomething();
}
int foo(A* obj) {
 return obj->getSomething()+
 obj->calcSomething();
}
int bar() {
 A* obj = new B;
 return foo(obj);
}

Fig. III-4 Dynamic Dispatch

Fig. III-3 Abstraction

Object-oriented paradigms are well-suited for application
software. This is not only true for graphical user interfaces
and similar application concepts, which are usually not part
of space on-board software, but also, for example, for data
processing applications. The existence of a large number of
class and template libraries for this purpose is evidence for
this[5][6][7].

However, for the hardware interface level of a space on-
board system usually a component-based architecture is
more suited due to the fact that the hardware of a spacecraft
does not change during the mission. This is different from,
e.g., a desktop computer, where peripheral hardware may be
added and removed multiple times during the lifetime of the
system or even during a single workday.

Thus, mapping the component-based architecture for the
hardware interface level to an object-oriented
implementation language will either degrade to an
imperative approach – e.g. using only an imperative subset
of C++ – or at least feel forced.

Consider, for example, the implementation of a driver for
a serial interface. If it is implemented as a class, with each
object representing one serial interface, the number of
instances is clearly limited and fixed for a given hardware
setup.

However, one basic assumption of a class-based object-
oriented system is that the number of instances and their
lifetime are indefinite and unknown at the time the class
definition is being compiled.

For this reason alone the compiler will introduce an
element of indirection, addressing object data and possibly
object methods indirectly via an implicit object pointer
(“this” in C++ and Java).

This indirection – and the use of function pointers –
could in some cases conflict with industry standards for
critical software, such as DO178 which disallows dynamic
objects.

It should be noted that the Singleton Pattern[8] does not
get rid of the indirection, but instead only places the instance
and its instantiation under the control of the class itself.

In C++ the declaration of all methods and data in the
class as static would allow the developer to get rid of the
indirection. However, now the management of instances
would be left to the developer, just as it was in Ada and C.
The resulting class would very much resemble an Ada
package. The only difference from a simple C
implementation is the use of the class as a distinct
namespace and the possibility of data-hiding.

C++ as a language has several specific advantages over
its historical predecessor C, in addition to those introduced
by its object-oriented nature.

C++ has a stricter type system in place and allows for
enforcement of stricter type checking in various situations,
which is also needed for proper overload resolution.

For example, while enumeration types were implicitly
mapped to integer types in C, they are their own type
category in C++, albeit with an implicit type conversion to
integer.

Also, by declaring a parameter with type “reference to
array of T” it is possible to avoid the usual implicit

degradation of an array to “pointer to T”. Otherwise this
degradation leads to loss of information about the original
array, such as its size.

Templates allow quite type-strict generic
implementations of containers and algorithms, for example.
Partial specialisation is a powerful tool for optimisation and
even for small amounts of automatic code generation.

However, the principles for finding the matching
specialisation for a given instance of a template define a
Turing-complete language. In other words: Partial
specialisation and matching of templates in C++ provides a
whole programming language which is executed at runtime.

While all these features allow for many interesting
applications[9], as a consequence the code may be very
difficult to review, to verify and test.

For example, the symbols “<” and “>” are overloaded in
the context of declarations and uses of templates, which
impacts readability due to syntactic ambiguities.

Consider the term “T<a<b,c>::d>”, which is clearly an
instance of template “T”. However it is not as clear what the
arguments are.

It is possible to read the only argument being an
enumeration constant “d” declared in the template instance
“a<b,c>”.

An alternative interpretation would be two arguments,
one being the boolean result of the comparison “a<b” of two
constants “a” and “b”, and the second being the boolean
result of the comparison “c>::d” of two constants “c” and
“d”, where “d” is explicitly stated to be declared in the root
namespace.

Without knowing what “a”, “b”, “c” and “d” are it is not
possible for the reader to determine the actual syntactic
structure of the term.

To make matters worse, the current C++ standard[10]
adds “>>” into the mix of overloaded symbols. This is
relevant when the last parameter to a template instance is
itself a template instance specification, such as in

“S<T<U> >”
here written in the way required by older C++ standards,
with a space in between the two closing angle brackets. The
new standard also allows to write this as “S<T<U>>”,
without a space between the angle brackets.

However, an advantage is the implicit combination of
declaration and initialisation of variables: Whenever a class-
type variable is declared, it is initialised either by an explicit
initialiser or constructor call, or by an implicit call to the
default constructor.

This default constructor may under specific
circumstances be a so-called defaulted default constructor
which initialises all member elements to their default values
according to their type.

Finally, function and operator overloading may help in
making the code more readable by adopting a mathematics-
like notation, e.g., for quaternion, vector or matrix
operations.

However, many of the implicit elements of C++
semantics may also lead to less comprehensible code.

For example, assignments to variables of class type may
implicitly call a copy-constructor or operator, as may return
statements with objects of class type.

Constructors accepting a single argument of a given type
may be used as implicit conversion operators, except if they
are marked as “explicit”.

Further, the comprehension of overloaded operators
depends on the reader performing the overload resolution
properly, while in C the name of the function to be called is
unique. Although in case of functions with static linkage,
there could be more than one function of the same name in
an application.

Consequently, regarding critical software and related
standards, a subset of C++ and proper design patterns should
be defined.

V. TEST CHALLENGES IN OBJECT-ORIENTED LANGUAGES
Some typical features of object-oriented languages

present specific challenges to testing in general and
automatic generation of input data for test and stimulation in
particular challenging.

A. Encapsulation/Data Hiding
In case of C++ encapsulation in the sense of data hiding

is achieved by declaring object members as protected or
private, the difference between the two being whether the
members are visible to subclasses or not.

While in Ada and C, all possible values/states of a record
(Ada) or structure/union (C) could be generated by
recursively filling the fields of the record, structure or union
with values of the appropriate type, encapsulation implies
that this is not generally possible for objects of class type.

Clearly one could simply modify the source code
automatically in such a way to remove the encapsulation for
sake of stimulation.

However, besides simply hiding the object state and its
representation from object users, encapsulation is also

typically used to ensure a consistent representation of the
state of an object.

Consider, for example, an object, the state of which is
represented internally by two fields of integer type. The
specification defines that, while any of both fields may be
negative, their sum must be positive. Consequently,
constructors and methods must not produce inconsistent
object states.

Now consider the case where both fields are randomly
initialised without considering the constraint: In about half of
the cases, the values selected would not satisfy the constraint
given in the specification.

While the values not satisfying the constraint are of
interest in terms of robustness testing – which includes
testing for robustness against invalid input data –, it is
typically not desirable to spend about half of the stimuli on
robustness testing alone.

Such constraints are not known to the test tool, except if
provided explicitly in a form usable for automatic generation
of applicable data, e.g. in any machine-comprehensible form,
which – so far – is rarely the case. They also cannot be
extracted from the source code in general due to Rice's
Theorem, an extension of the Halting Problem, which states
that for any non-trivial property there is no algorithm that
can determine whether a given program has that property. In
this context “non-trivial” means that there is at least one
program that has the property and at least one that does not.

It is therefore reasonable to use the declared constructors
for generating objects for stimulation with what according to
the implementation should be consistent states. Only
specifically for robustness testing the concepts of
consistency as implemented in the software should be
ignored.

However, it is not guaranteed that all possible states of
the object can be reached this way. One simple example of
this are objects implementing a finite state machine which
always starts in the same initial state after construction.
Except if the state machine is degenerate, there must be more
than this one initial state, and by construction these other
states cannot be reached from calling the constructor alone.

The only other way of manipulating the state is by using
the methods of the object.

In case of pure finite state machines theory dictates that
the number of transitions required to reach any given,
reachable state is finite. However, although the state space
may be finite, it may still be too large.

Thus the construction of an object requires invocation of
the constructor followed by a sequence of method
invocations, the length of which is unknown without
additional information.

To further complicate the issue, the construction of
objects may be recursive in that the constructor itself or the
methods invoked afterwards may require data of class type
as parameter.

For an example, consider Fig. V-1. The class declared in
this example represents a simplified stream or rather, a first-
in-first-out-buffer (FIFO). Initially the FIFO is empty, i.e. no
data has been written to the stream and – consequently – no
data has yet been read from the FIFO.

class Stream {
public:
 Stream():readPtr(0),writePtr(0) {}
 void read(char* data,
 unsigned int size) {
 if (readPtr+size>writePtr) {
 /* error */
 }
 …
 readPtr+=size;
 }
 void write(const char* data,
 unsigned int size) {
 …
 writePtr+=size;
 }
protected:
 char* buffer;
 unsigned int readPtr;
 unsigned int writePtr;
};

Fig. V-1 Challenge Data Hiding

class A {
public:
 virtual void foo();
 void bar() {
 …
 foo();
 …
 }
};

Fig. V-2 Library Class A

class B: public A {
public:
 void foo() {
 ...
 }
};

Fig. V-3 Application Class B

Wanting to test the method read, one would have to fulfil
the condition that there are at least as many bytes available in
the stream as shall be read. Clearly, this is not the case
directly after construction for any case in which the
parameter size passed to read is greater than zero.

There is no constructor that would allow the stream to be
initialised to any state other than the empty state. The only
way to create a pre-filled object is to construct one with the
default constructor and to call write with the appropriate
parameters. However, for all practical purposes, without
annotations a software tool can only guess this connection.

B. Subtype Polymorphism
Subtype polymorphism is not specific to object-oriented

languages. For example, it is possible to use a value of type
“unsigned short” for a parameter of type “unsigned int” in C.
In Ada it is possible to declare subtypes of scalar types, e.g.
with reduced value range.

However, neither Ada nor C allow declaration of
subtypes of record (Ada) or struct/union (C) kind.

While in the subtyping scheme of Ada, the total range of
values is given by the topmost scalar supertype and subtypes
can only select a subrange of this total range, every subclass
S of a superclass T extends the set of objects applicable as
values of type S.

This is true even if S does not introduce any new object
fields, as S may introduce variants of implementations for
the methods of the class. Thus the objects of type S may
behave differently from the objects of type T.

Consequently, when generating an object of type T, also
all subclasses of T have to be considered for testing.

C. Dynamic Dispatch
Due to dynamic dispatch, subclasses may modify the

behaviour of superclass methods, even of those that are not
overridden.

As an example, consider Class A declared in Fig. V-2.
This class declares a method foo subject to dynamic dispatch
and a method bar that uses foo. Whether bar is subject to
dynamic dispatch or not is not relevant for this example.

Assume that Class A is declared in a class library used by
an application and the application declares Class B shown in
Fig. V-3. Class B overrides foo. As foo is subject to dynamic
dispatch, an invocation to bar on an instance of Class B may
show different behaviour than for instances of Class A itself.

No amount of verification on the class library can ensure
that the guarantees associated with Class A still hold in the

context of the application, except if derivation of subclasses
by the application is prohibited and properly checked.

D. Templates
A challenge more specific to C++ as a language is

template programming. The combination of partial and
complete specialisation with the pattern-matching provided
by the C++ template mechanism is in itself a Turing-
complete language with programs being executed at
compile-time by the compiler.

This specific feature of C++ has led to a large set of
generic template libraries, including the Standard Template
Library defined by the C++ standard itself, containing
definitions and implementations of various generic container
classes and algorithms. Other examples are the Boost[5] and
LOKI[7] libraries or the Computational Geometry
Algorithms Library (CGAL)[6].

The specifically practical challenge regarding
information extraction from source code lies in the effort
required for implementation of an appropriate parser which
is able to properly understand template declarations and to
apply pattern matching as specified in the standard on
template instantiations.

However, a more conceptual issue arises for templates,
similar to that resulting from dynamic dispatch and subtype
polymorphism: The issue of determining the candidate types
for type parameters.

While for parameters of class type in functions and
methods it is straightforward to determine the candidate
subtypes from the subclass relationship explicitly specified
by a language construct specifically designed for this
purpose, it is difficult or even impossible to determine which
types would be eligible for a type parameter of a template.

The template may place constraints on the interface and
behaviour of the type parameter. For example, CGAL
provides a template to define what is called a kernel,
providing operations for defining and manipulating
polyhedra with a given type of vertex, edge and face.
Instances of the polyhedron-template require a structure as
type parameter which mainly contains type definitions for
the vertex, edge and face types. The names of these types are
fixed. Further, there is a set of operations that are required to
be possible with objects of these types.

If one tries to instantiate this template using a type
parameter that does not satisfy these constraints, compilation
errors may occur, but do not necessarily occur. Depending
on how the compiler instantiates the templates, errors may
only occur when a method of the template instance is used
which – when instantiated with the given template
parameters – is semantically incorrect.

class Singleton {
private:
 Singleton() { … }
public:
 static Singleton* getInstance() {
 if (!instance) {
 instance = new Singleton();
 }
 return instance;
 }
private:
 static Singleton* instance;
};

Fig. V-4 Singleton Pattern

Besides the complexity of implementing an appropriate
parser and semantic analyser, it would seem straightforward
to simply try all types present in the application or library as
type parameters wherever type parameters are required.

However, template instances themselves are types and
would therefore be eligible themselves as type candidates
under such a scheme. The set of candidates to be evaluated
could therefore be infinite in the presence of templates.

E. Stubbing of Constructors
Automated testing may require stubbing of functions and

– in the object-oriented case – classes. The reasons may
vary.

In early stages of implementation there may be parts of
the software that are not yet implemented. There also have
been cases where only the interface declarations but not the
implementation – neither in source- nor in object-code – was
available. A useful strategy for approaching the automated
test of a large software package is also to exclude part of the
implementation and limit the actual test to a subset of the
package.

With object-oriented languages such as C++ it may be
necessary to also stub constructors. These are special
functions that are intended to set up an object for its initial
state, possibly depending on input parameters.

Let us assume for a moment that we are talking about
stubbing a default constructor, i.e. a constructor that does not
require any parameters.

In that case the constructor to be generated needs to
ensure that inherited portions of the object are initialised by
calling a constructor of each superclass, and that fields
introduced by the class itself are properly set up.

In C++ this is done using initialisation lists, which are
placed immediately before the actual body of the constructor.
The rationale for this separation from the actual body is that
the object should be in a defined state already upon entering
the body.

For example, to call the constructor of a superclass, the
name of that superclass is given, followed by the parameters
to the constructor in parentheses. Similarly, to initialise a
field, the name of the field is given, followed either by the
value for the field or by parameters to the constructor if the
field is of class type.

As any class may have more than one declared
constructor, each of which may lead the object to be
initialised in a different state, representative testing would
require to ensure that the constructor being called is actually
the constructor that is to be called in the final
implementation. However there may be no information
available on which constructor this is.

In other situations where definitive information is not
available, automated source-code-based testing falls back to
randomness or iteration over the whole set of possible
alternatives.

In this case, however, it is only possible to select one
constructor statically at the time of generation of the stub.

Now let us consider the more complex case, where the
constructor to be stubbed receives arguments.

Usually, these arguments are used to initialise the fields
of the object. This initialisation is not necessarily direct in
that the value of a parameter is directly written to an object
field.

Instead, intermediate calculations may be carried out and
the parameters or the results of these calculations may even
be used as parameters for further constructor calls, e.g. for
super-class or field constructors.

The stub generator cannot know the correct way of
transforming the parameters into inputs for the constructors
called.

F. Use of Design Patterns
Some design patterns require special handling in test data

generation and in testing. One prominent example is the
Singleton Pattern[8], shown in Fig. V-4. The purpose of the
singleton pattern is to ensure that only a single instance of a
given class exists in a given context. For example, there may
be a single instance per thread or a single instance for the
whole application. The singleton instance provides control
over the single-instance-criterion and simple access to the
appropriate instance.

Use of the Singleton Pattern may be criticised from an
architectural and design point of view – e.g. for increasing
coupling, an attribute unwanted in object-oriented design, or
for making construction order less predictable – the
challenge for testing does not arise from the design issues,
but rather from the form how the Singleton Pattern is often
implemented.

In order to enforce the single-instance-rule, construction
of other instances has to be prohibited. This is usually
achieved by hiding all constructors of the respective class
and introducing a static class-method – e.g. named
getInstance() – to return the single instance. The hidden
constructors are visible to that class method, so it is able to
construct an instance, but no part of code outside the class
can do so.

Notably, in most languages there is no explicit language
support to distinguish such construction methods from other,
non-construction methods. They are not constructors in the
meaning that term has in the language, as a visible
constructor could be used to violate the single-instance-rule.
They have to be declared and defined in the same form as
any class-method is expressed, although they are introduced

class A;
class B {
public:
 B():val(0) {}
 int getVal() const { return val; }
 int calcVal(int x) { val=x*x+2*x+5; }
 bool operator==(const B& other) const {
 return (other.val % 7) ==
 (val % 7);
 }
private:
 int val;
};
B* foo(A* obj);
enum verdict_t testFoo_123() {
 A* input_obj = new A(...);
 B* ret = foot(input_obj);
 B* refValue = new B();
 refValue->calcVal(???);
 if (*refValue==*ret)
 return success;
 else
 return failure;
}

Fig. V-5 Regression Testing

with a very specific intent, and this intent is important for
test data generation.

A test data generator may at some point find that the FUT
or some other function which has to be called for test
preparation requires an instance of the singleton class to
work on. All of the relevant constructors of that class are
hidden, so the data generator has no possibility to construct
an instance in the classical way.

A similar situation may arise with the Abstract Factory
Pattern, the Factory Method Pattern, the Prototype Pattern or
the Builder Pattern. All of these share the feature of
introducing an additional level of indirection in creation of
objects, with the actual mechanism of construction not being
apparent from the syntax for a program analysing the code.

G. Generation of Regression Test Suites
The process flow of execution of a single regression test

cases consists of the following steps:
1. Construction of the input data
2. Invocation of the function-under-test
3. Comparison of the actual output to the expected

output
4. Recording of the input and output data for

repetition of the test

As in the FAST-process applied by the authors the test
generator shall require no additional information about the
application, the generator also has no knowledge about the
expected output. Instead, test stimuli prompting an
interesting response by the function-under-test are collected
and regression test drivers are generated based on the input
stimulus and the actual output observed. To allow testing
against a specification, the observed outputs have to be
manually verified regarding the contents of the specification.
Otherwise, the regression test can only be used to observe
changes in the behaviour of the software between versions.

When generating regression test suites from
automatically generated test data, the first two steps in the
regression test process are straight-forward to handle. After
all, the input data has been constructed before and the way it
was constructed is known and can be transformed into code
that repeats this process. The generation of an invocation
expression or statement also poses no special implementation
challenges.

However, the third step is much more complicated. The
approach so far for C has been to iterate over the structure of
the observed output data and generate matching statements
comparing the output observed in the test data generation run
to the output observed during the execution of the test driver.

But this is not a mechanism for logical comparison in any
case. For example, in case of a container type such as a tree
or a hash set, equality is defined in terms of objects
contained in the container rather than of the actual values of
record elements used to represent the set.

A very much simplified example is given in Fig. V-5.
Here, a function foo expects an instance of class A and
returns an instance of class B.

The objective of the regression test is to

1. generate the instance of A in just the same way
as it was generated during the stimulation run,

2. pass it to foo,
3. record the instance of B returned, and
4. compare the state of that instance to the state of

the instance returned during the stimulation run.

As previously explained, Steps 1 to 3 are straightforward
to implement. Step 4 is the difficult part of the process.

The instance of B was generated by the function-under-
test in the stimulation run, so the way its state was achieved
is not known to the test-tool.

The state variables are hidden from the outside, and the
behaviour of the function setVal is clearly not useful to re-
establish the state, as it does not set val directly, but rather
indirectly via some calculations. In the practical case, these
calculations may be arbitrarily difficult to reverse. Thus it is
not possible to use setVal to re-establish the previously
observed state.

Further, it is unclear what notion of equivalence or
equality shall be used to compare the newly observed to the
reference value. In this case, the comparison operator was
redefined to represent a notion of equivalence, not equality.
It may be that in this specific case, this notion of equivalence
is not applicable, but rather direct equality or another concept
of equivalence was intended to be used.

So neither is there an obvious way of providing a copy of
an output object to use for logical comparison using
appropriate user-provided comparison methods, nor is it
generally possible to at least implement a structural
comparison due to the presence of hidden data.

H. Inaccessible Types and Methods
Classes may contain declarations for methods and types –

including other classes – that are marked to be hidden. In

Java and C++, these may be declared as private or protected,
and thus are inaccessible to any code or declarations outside
designated portions of the software.

These private methods are often internal helper functions
used to add better structure and separation of concerns to the
implementation of the functionality specified for the public
interface of the class.

As such, they may violate invariants defined on the state
of the class, as long as these violations are resolved before
execution leaves the domain of the class again.

Depending on the test strategy, tests of these internal
methods may be desired or not.

In a black-box strategy, the main focus is on testing
whether a class performs as specified when using its public
interface. The internal methods may be seen as
implementation detail that is invisible to the user anyway.

In a white-box strategy, individual tests of these internal
methods may be desirable.

For example, any faults being observed in a test of the
public interface may come from defects either in the public
method or in any of the internal methods called from there
directly or indirectly. Localisation of the defect may thus be
difficult. Testing the internal methods bottom-up instead
may reduce the localisation effort for any defects to be
found.

VI. CONSEQUENCES AND SOLUTIONS

A. Encapsulation/Data Hiding
There seems to be no solution which does not risk to

either systematically exclude a significant portion of the state
space of an object or to produce large numbers of duplicate
inputs or long sequences of idempotent or otherwise
superfluous method invocations, without at the same time
requiring additional information that is to be supplied
manually in a formal manner usable by a software tool.

For example, one could specifically mark methods that
have no effect on the object. These would not be considered
when generating a sequence of method calls intended to
manipulate the state of the object.

In C++, these can be marked by using the qualifier const
after the method prototype. However, it is not unusual to find
a similar method with the same name and without const-
qualifier in the same class.

This is often the case in getter-methods that provide
access to a sub-object by passing a reference to that object to
the caller. In the const-qualified case, the referenced object is
const-qualified itself and thus cannot be modified by the
caller. In the non-const-qualified case, the const-qualifier is
also missing on the referenced object, and thus the caller can
modify that object.

Still, the getter-method itself does not affect the state of
the object, but instead only returns a reference to part of it
for the caller to potentially modify.

Another way of restricting the set of sequences of method
calls would be specification of a protocol state machine.
Such a machine would formally specify the order in which
the methods may be called in the nominal case, and may

even specify constraints on the values the methods may be
passed. This form is often used in model-based testing.

B. Subtype Polymorphism/Dynamic Dispatch
As a consequence of dynamic dispatch in combination

with subtype polymorphism, it is not possible to use
evidence collected in testing a class library to deduce the
reliability of that class library when used in an application.

An application may use a class library, for example, by
deriving its own subclasses from classes in the library. In
some cases a class provided by the library may be abstract,
but no concrete subclass may be provided in addition. In that
case, the application is even forced to provide its own
subclass to be able to make use of the functionality.

There the set of all subclasses of a class cannot be known
– neither in the automatic nor in the manual case, as would
be required for representatively generating objects of class
type.

This is not necessarily different from C, as dynamic
dispatch can be implemented in C as well using function
pointers.

However, in object-oriented languages dynamic dispatch
and subtype polymorphism typically are important parts of
the language. They may even play a crucial part in the
decision for an object-oriented over an imperative language.

Thus any attempt to prohibit the use of these features to
avoid the difficulties in testing would very probably be
subject to strong criticism.

As a minor consequence of subtype polymorphism and
dispatch, a unit actually is a complete class, including all
methods that are inherited from superclasses. The change of
behaviour may affect inherited methods, so that these have to
be re-tested in context of any subclass. However, that is not a
consequence specific to automatic test data generation.

C. Templates
To solve the issue of candidates for template type

parameters, considering only those concrete instances used
in the application seems to be the most straightforward
solution.

This also fits the approach of only considering complete
applications. The template instances used in the application
can be considered to be unique classes, as if they were
defined without the use of templates.

D. Use of Design Patterns
Short of requiring manual annotations, the main

possibility of handling construction patterns seems to be the
use of heuristics.

The patterns most relevant to automatic test data
generation seem to be construction patterns. These have in
common that there is some method or function that provides
an instance of the relevant class.

There are some issues with this heuristic. First of all, it
includes getter methods. After all, the existence of the
Abstract Factory Pattern requires that a tool also considers
object methods as possible constructors. However, getter
methods may return an object of the desired type, but that

object might have been supplied earlier to the constructor of
the object on which the getter method would be invoked.

One option would therefore to exclude all methods that
directly or indirectly require an instance of the respective
type for invocation. This way, however, one might exclude
implementations of the Factory Pattern that use another
instance of the respective type as a template for the object to
be created. This issue is similar to the problem of achieving
different states of an object by calling a constructor and a
sequence of methods, as discussed in Sect. VI.A, and
therefore the same solution approaches may apply.

As another complication, the return value of a function
might not be the only way to pass outputs to the caller.
Parameters passed by-reference or even more complex
encapsulations of outputs may be another possibility.

For example, a function in C++ may declare a parameter
to be a reference to a pointer to class T, which may be used
to pass a newly created instance of T to the caller. However,
without additional information a tool cannot distinguish
whether the parameter is bidirectional (input-output) or
output only. Thus, the decision on whether the function
requires an instance of the relevant type as input cannot be
made.

Further, at least theoretically it is possible that the
instance is passed to the caller encapsulated in another
object, e.g. when multiple objects are created at once. This
may be necessary, e.g., due to structural invariants such as a
group of objects each having a link to each other. Obviously,
any sequence of generating these objects would breach the
invariant at least temporarily. The reason for use of the
Abstract Factory Pattern may be that this temporary violation
of the invariant shall be kept hidden from the caller.

Thus, any of these approaches to automatic identification
of constructor methods that are not constructors in the
language sense will necessarily be a heuristic and most
probably exclude some of such constructor methods from
consideration.

E. Inaccessible Methods and Types
As already mentioned in Sect. V.H, this problem might

be solved by simply stimulating only on public interfaces
and assuming that the internal methods are tested in that
context as well. The degree of coverage achieved is
measured in context of the FAST process and thus gives a
feedback on what was tested.

However, if the test strategy required testing of internal
methods as well, there are at least three options:

• declaring the relevant functions from the test
environment to be friends of the relevant class
(possible in C++),

• declaring the test functions as part of the relevant
class,

• modifying the class declarations so that the relevant
elements are public.

All of these options require modifications to the source
code for the purpose of the test. These modifications may be
temporary in that they are only present during test, but the

software product as delivered stays unchanged. Fortunately,
it is possible to automate these modifications.

The first alternative is possible at least in C++. Declaring
a function to be a friend of a class allows that function access
to private and protected members of that class, thereby
removing the limitation for the test environment.

In languages which do not provide a feature comparable
to friend-declarations, the other alternatives may apply. A
function that itself is a member of a class also has access to
all the other members of the same class, independent of
whether they are private, protected or public.

The third alternative achieves the same, but makes the
relevant members accessible even to functions outside the
class scope.

At least in C++, this rather drastic modification is not
expected to change the behaviour of the software. Such a
change could only occur if due to the increased accessibility,
overload resolution – i.e. the selection of the operator,
method or function to be called from a set of candidates of
the same name – would now result in different callees being
selected in parts of the code.

However, at least in C++, visibility and accessibility are
separate concepts: All members of a class are visible at all
points of the code, and as such are all considered in overload
resolution. Once overload resolution has resulted in a single
remaining candidate member, accessibility is checked.
Therefore, the set of candidates is not changed by changing
the visibility of the members.

The same may apply for other languages.

F. Conclusions
The solutions discussed above – requiring manual

intervention – are not a matter of test automation and of the
FAST process, but of manual, traditional testing as well.
However, in context of such a high degree of automation
manual intervention is not the preferred solution, but in some
cases a constraint which cannot be avoided – at least
currently. The challenge for the FAST process is to find and
propose more efficient solutions.

VII. IMPLEMENTATION AND TESTS
The issues as discussed above in Ch. V require a

staggered approach to extend the FAST process from C to
C++ under consideration of what typical space software
needs and how it could best benefit from the features of the
FAST process.

A. Steps of Implementation
Therefore the extension of the FAST process from C to

C++ shall be performed in the course of the following steps.
In a first step – very close to finalisation – the basic

features shall be supported as required for identification of
sporadic faults complementing the standard test process:

• Massive stimulation
• Fault injection
• Stubbing of missing functions / methods including

constructors and destructors

• Provision of filtered lists on anomalies pointing to
potential faults

with the following limitations:
• Support of visible, public methods only,
• No parsing of templates.

In the next steps shall be supported
• information hiding and encapsulation
• templates.
• procedures to step through the state space, and finally
• regression testing.

The effective schedule for implementation of next
features will be driven by the needs of the application
software.

B. Implementation
In its current shape the extension of the FAST process to

support C++ software does – in addition to the features
already supported for C

• extract information from C++ source code
according to the C++ Standard 201112 without
supporting templates

• instrument the source code for coverage
analysis, fault injection, supporting the later
extension to cover encapsulation,

• generate stubs for missing methods including
instantation of a concrete subclass if a class is
abstract, recursively considering superclasses
and subclasses

• generate test stimluli for C / C++ types
including calls of associated constructors,

• call methods including random selection of
overloaded methods at run-time.

Based on the extracted information more context
information is derived, addressing correlation of information
across compilation units, because generation of the test
environment requires more information than compiler and
linker need. E.g. for an abstract (super-)class concrete
methods may be provided in separate compilation units, i.e.
in the compilation unit of the super-class nothing it known
about its sub-classes. To test the methods of the super-class
all concrete methods of its sub-classes must be executed.

C. Tests

Tests have been applied to a software package intended
for use for an experiment on the International Space Station
ISS. The application shall run under Linux. Its properties are:

• 302 hpp-files
• 229 cpp-files
• 643 public methods
• 53200 physical lines
• 22600 LOC

Out of these 643 methods 135 – provided in 20 files
respectively abstract classes – require more derived context
information on concrete subclasses to test them. Tab. VII-1

shows quantities on classes as occurring in the parsed
application files. The second colum refers to classes, class
templates, structures and unions defined in the set of
application files, the third colums to all files considered.
Latter set of files refers to the application files plus the h-
files from Boost and Loki and some h-files from Linux – as
required by the application.

Item Application Files
Only All Files

Classes 279 325

Structures 55 176

Unions 0 15

Class Templates 364 469

Total 698 985

Tab. VII-1: Profile of Classes

The GNU compiler g++ 4.7.2 has been applied for
compilation and testing of the software.

The test generation process has been applied to this
software package and the 643 methods.

Evaluation of the test results has just been started, mainly
focusing on verifying correctness of the test process and
report generation, taking the results for improvement of the
test process, and minimisation of false alarms. When this
phase is finished, analysis of the report for issues in the
software under test will start.

VIII. CONCLUSIONS
The issues for implementation of an automated test

process which takes its information from source code or
other machine-readable information – if provided – are much
more challenging for object-oriented languages like C++ or
Java than for imperative languages like C or Ada. Such an
automated process requires much more information than
what is needed for compilation and linking the source code
to get an executable test environment. Information from
different compilation units may have to be combined to get a
full overview on the correlations.

The power of C++ or of an object oriented language
respectively implies that the mapping between a statement in
source code onto assembler code is much more complex and
extensive than in C. E.g. in C a return may be covered by a
short sequence of assembler instructions, while in C++ a
cascade of operations may be executed, including implicit
calls to destructors and copy/move operators..

Further, the dynamics related to sub-classing,
overloading and dispatching generates a huge number of
combinations which have to be considered in advance when
building the test environment.

However, what is a big challenge for implementation of
such an automated process, also applies to manual test
preparation. The huge number of cases to be considered
suggest that a test engineer only can achieve a very small
coverage figure w.r.t. what should be covered, especially
regarding overloading and dispatching.

In consequence, the high dynamics of object oriented
software and the huge number of possible execution paths
which come on top of the huge number already of imperative
programming – suggest that an automated process is required
such as FAST to achieve a sufficient degree of coverage.
Although such an automated process never will perfectly
reach the required coverage, it will reach more than what can
be achieved when manually building the test environment.

An automaton can extract information from the source
code much more efficiently than an engineer and correlate
and synthesize it to what is required for generation of the test
environment, which results in derivation of more
combinations for testing.

The current status of implementation shows that the
FAST process can be applied to object-oriented languages
like C++, too, and it forms the base for further extension
towards more C++ features. In its current status the FAST
process can support fault identification in C++, especially
tackling sporadic faults, as it did in the past for C software,
for quantities of source code as produced in real projects.

ACKNOWLEDGMENT
The activities as referenced in this paper were supported

by DLR Space Agency (Deutsches Zentrum fuer Luft- und
Raumfahrt) on behalf of BMWi (German Federal Ministry of
Economics and Technology) under reference number FKZ
50 RA 1120.

REFERENCES
[1] Ralf Gerlich, Rainer Gerlich, Marek Prochazka, Kenneth

Kvinnesland, Bengt Solheimdal Johansen: A Case Study on
Automated Source-Code-Based Testing Methods,
Proceedings of the DAta Systems In Aerospace Conference
2013 (DASIA 2013).

[2] R. Gerlich, R.Gerlich, T. Boll, K. Ludwig, Ph. Chevalley, N.
Langmead: Software Diversity by Automation, Proceedings
of the DAta Systems In Aerospace Conference 2005
(DASIA 2005).

[3] R. Gerlich, R. Gerlich, C. Dietrich: Fault Identification
Strategies, Proceedings of the DAta Systems In Aerospace
Conference 2009 (DASIA 2009).

[4] G.Fraser, M.Staats, P.McMinn, A.Arcuri, F.Padberg: Does
Automated White-Box Test Generation Really Help
Software Testers? Proceedings of the 2013 International
Symposium on Software Testing and Analysis, pp. 291-301

[5] Boost C++ Libraries, http://www.boost.org/
[6] Computational Geometry Algorithms Library,

http://www.cgal.org/
[7] Loki, http://loki-lib.sourceforge.net/
[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design

Patterns, Addison-Wesley, 1995.
[9] Andrei Alexandrescu: Modern C++ Design: Generic

Programming and Design Patterns Applied, Addison-
Wesley, 2001.

[10] ISO/IEC 14882:2011 – Programming languages – C++,
2011

