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Abstract—With the advent of languages such as C++ and Java 
in mission- and safety-critical space on-board software, new 
challenges for testing and specifically automated testing arise. 
In this paper we discuss some of these challenges, consequences 
and solutions based on an experiment in automated source-
code-based testing for C++. 
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I.  INTRODUCTION 
Automatic source-code-based testing is a method for 

software testing in which the procedures and functions of a 
software package are automatically stimulated based on the 
interfaces visible in the source code. 

Fully automatic generation of the test environment, test 
stimuli, proper instrumentation of the source code and 
automatic reporting of observations in condensed form 
allows massive stimulation of software with millions of 
stimuli, while keeping the number of reported anomalies 
sufficiently low, thereby increasing the probability of 
occurrence and detection for sporadic faults. 

Due to automatic  instrumentation of the software 
package under test and the test environment, functional faults 
can be detected even if no application-specific oracle is 
available to individually check test stimuli and the 
corresponding software reaction for compliance with the 
specification[1]. 

The effectiveness and efficiency of this approach is 
strongly dependent on the approach selected for generation 
of input stimuli. 

While on the one hand side, the profile of the stimuli 
generated should be as close as possible to the operational 
profile in order to have representative evidence of the 
software working under operational conditions, robustness 
testing by way of injecting invalid values or values normally 
not or rarely occurring during operation should not be left 
out. 

It is therefore important to properly balance these two 
aspects when generating stimuli. However, it can be very 
difficult or even impossible for a test tool to infer the 
programmer's intent or the requirements regarding valid and 
invalid values from the source code, except if sufficient 
annotations for this explicit purpose are present. 

However, domain-specific heuristics may be applied in 
order to tune the generation of stimuli towards the most 
probable intent, neither under- nor overemphasizing 
robustness testing. 

A considerable body of experience on all of these aspects 
in the space-software domain exists for purely imperative 
languages such as Ada[2] and C[1][3], but with the advent of 
languages such as C++ and Java in space software, an 
extension towards object-orientation is necessary. 

Many of the issues discussed in this paper in context of 
automated testing of C++ software are also valid for 
conventional, manual testing of C++ source code. Although 
there are some issues for automated testing, the discussion 
shows that the complexity of testing C++ software demands 
automation, e.g. to tackle the large number of combinations 
significantly increased by O-O concepts such as overloading 
and dynamic dispatch, and to obtain sufficient visibility on 
what is really executed. 

The paper is structured as follows: First we define the 
aspects of object orientation which will be subject of the 
discussion in this paper, and discuss some advantages, 
disadvantages and issues of object-orientation in general and 
of C++ in particular in context of on-board space software. 

This is followed by an exposition of challenges with 
regard to automated source-code-based testing that we have 
encountered so far, followed by a presentation of solutions 
and/or consequences of these challenges. 

Then we present the results of applying the current tool 
version  to representative space on-board software written in 
C++, followed by our conclusions from the analysis and 
experience. 

II. THE FAST PROCESS 
The FAST (Fully/Flow-optimised Source-code-base 

Testing) process was presented in detail already in[1] in 
context of C software. Therefore only the most important 
features as of relevance for testing of object oriented 
software shall be discussed here. 

Massive stimulation: As the process takes the information 
required for generation of stimulation data and of the test 
environment from the source code and other machine-
readable information – as far as available,  a huge number of 
stimuli can be injected into a FUT (Function-Under-Test). 

Fault injection:  The stimuli may represent either valid or 
invalid data. 



class A { 
public: 
 A(int aVal):val(aVal) {} 
 int getVal() const { return val; } 
protected: 
 int val; 
}; 
int foo(A* obj) { 
 return obj->val; // error  
} 
int bar(A* obj) { 
 return obj->getVal(); // OK 
} 
class B: public A { 
public: 
 B(int aVal): A(aVal) {} 
 int getValTimesTwo() const { 
  return 2*val; 
 } 
} 

Fig.  III-2 Encapsulation and Data Hiding

class A {...}; 
class B: public A {...}; 
int foo(A* obj); 
int bar() { 
 A* obj = new B; 
 return foo(obj); 
}

Fig.  III-1Subtype Polymorphism

Observation of properties: When executing a FUT the 
process can observe the properties, especially anomalies, and 
record them using given algorithms. 

Filtering of Information: The observed information is 
filtered according to given criteria, thereby reducing the 
amount of information to be evaluated manually. 

Generation of test drivers for regression testing: 
According to given criteria the process can select certain 
tuples of input and output data for regression testing and 
generate the test drivers and their execution environment. 

Massive stimulation in context of fault injection 
significantly raises the probability of fault activation. 
Information filtering reduces the amount of information, and 
provides lists on unique anomaly patterns. Therefore 
sporadic faults have been detected although the software-
under-test passed already the verification procedures as 
required by the standards for a given criticality level. 

A recent publication[4] on automation in context of Java 
suggests that automation does not bring an advantage when 
the number of injected stimuli is limited to the order of 
magnitude which can be reached by manual generation of 
stimuli. This is not surprising as the generated stimuli are 
equivalent to the manually generated ones – more or less. 

An issue arises in context of “design-by-contract”, when 
the information on the contracts is not available in machine-
readable form. Then a FUT may be exposed to invalid data, 
i.e. to data which may not occur under normal conditions of 
system operation, while the test automaton considers such 
data as valid as they comply with the prototype of the FUT. 
Such events are called “false positives” as they suggest a 
fault while it is not – provided that the related contract is 
always fulfilled at time of operation. 

In on-board software the concept “design-of-contract” is 
applied in many cases, and it is a major base to achieve safe 
operations, thereby relying on a cooperative user  of a FUT. 

However, in context of security such a user is not 
cooperative and the so-called false positives are just the 
holes through which a hacker can penetrate into the system, 
i.e. it is desirable to know about. 

C++ may be applied to applications where security is of 
higher interest. Due to use of UML and design patterns 
allowing a higher degree of reuse, C++ is increasingly used 
in the space domain. 

Both trends make it reasonable to extend the FAST 
process from C to C++. 

III. OBJECT ORIENTATION CONTEXT 
In this paper we will mainly discuss object-orientation 

based on the following features, which are present in Java 
and C++: 

•  Subtype polymorphism/inheritance, 
•  encapsulation (“data hiding”), 
•  abstraction, and 
•  dynamic dispatch. 

Subtype polymorphism is the notion that a datatype S – 
the subtype – is related to some datatype T – the supertype – 
by a notion of substitutability, i.e. wherever an element of 
type T is applicable, an element of type S can be used as 

well. This applies specifically to function and procedure 
parameters. 

An example is shown in Fig.  III-1. Here a class A and a 
subclass B of Class A are declared. The function foo accepts 
pointers to instances of A as parameter. Due to the 
substitution principle, instances of class B may be used in 
any place where an instance of A is expected, so that foo also 
has to accept instances of B. 

Encapsulation typically means both the bundling of 
methods and object data, as well as the concept of hiding the 
object state from program elements outside the object class 
or subclasses. The latter concept is also known as “data 
hiding”. 

An example for encapsulation and data hiding is shown 
in Fig.  III-2. Here a class A is declared, containing data – in 
the form of data member val – and operations – in the form 
of a constructor accepting a single integer parameter and a 
so-called getter method getVal returning the value of val. 

The member val is declared to be protected, meaning that 
it is accessible only from inside the class or – under certain 
circumstances – its subclasses. 

Therefore, val cannot be accessed directly from the 
function foo. However, the getter-function getVal is declared 
public, so it is accessible from outside the class, so that the 
function bar can use it. 

Access from subclasses is shown in the presented 
subclass B of A, where val is accessed directly inside the 
member  method getValTimesTwo. 



Direct access by subclasses can be avoided by declaring 
members to be private. In that case, the member can only be 
accessed by the declaring class itself. 

Abstraction is the representation of an idea or concept 
without specification of its concrete implementation. In most 
object oriented languages this is supported by specification 
of methods by interface only, without providing an 
implementation. Classes containing such interface-
declarations – called “pure virtual” methods in C++ – are 
called “abstract classes”. The actual implementations are 
instead provided by concrete subclasses. 

An example for abstraction is shown in Fig.  III-3. Here, 
Class A declares a “pure virtual” method doSomething – 
indicated by the keyword virtual and the “= 0” after the 
method prototype. Function foo is working on instances of 
Class A and as A declares the method, foo can make use of 
that declaration. 

However, it is not possible to create instances of A 
directly. For this, a concrete class implementing 
doSomething is required. In the example, this class is 
represented by Class B, a subclass of Class A. The lack of “= 
0” after the prototype in Class B indicates that B actually 
implements doSomething. Therefore the function bar can 
create an instance of B and pass it to foo. 

The function foo itself, however, is completely unaware 
of what concretisation of A it will be passed. The developer 
has to ensure that the implementation in Class B actually 
implements the guarantees regarding its behaviour that foo 
expects to hold. 

Dynamic dispatch is the process by which the 
implementation of a polymorphic operation is selected at 
runtime. This is necessary as due to the substitution 
principle, a variable of object type A may at runtime hold an 
object of a subclass B of A, where the implementation of the 
respective operation in B may differ from that in A. 

An example is shown in Fig.  III-4. Here Class A declares 
two member methods, getSomething and calcSomething. The 
latter is declared virtual, indicating that it is subject to 
dynamic dispatch, while the former is not. 

Class B is a subclass of A, providing its own 
implementations of these two functions. Again, 
calcSomething is subject to dynamic dispatch, not primarily 
because it is declared virtual, but because it overrides a 

method in A that is declared virtual. The method 
calcSomething in Class A is said to “inherit” the virtual 
attribute from the method with the same signature in Class A. 

Whenever a method is invoked on an instance of a class, 
the method of invocation depends on whether the method is 
declared to be subject to dynamic dispatch or not. 

In the latter case, the implementation to be invoked is 
determined from the type of the expression it is invoked on. 
This type is determined at compile time. In the example, the 
call to getSomething in function foo always resolves to the 
implementation of getSomething in Class A, and never to the 
implementation in Class B, even though bar actually passes 
an instance of B to foo. 

If the method is declared to be subject to dynamic 
dispatch, the implementation to be used is determined at 
runtime based on the type of the actual instance referred to. 
As a consequence, the call to calcSomething will be resolved 
to the implementation of that method in Class B when foo is 
called with an instance of B, such as, e.g., from function bar. 

IV. C++ IN SPACE ON-BOARD SOFTWARE 
Object-oriented languages in general and C++ in 

particular have some advantages and some disadvantages 
regarding the implementation of space on-board software 
compared to imperative languages in general and C in 
particular. 

For example, encapsulation and inheritance allow for 
stronger modularisation, increase of software reuse and 
provide a very basic mechanism for fault isolation. 

Classes can enforce data consistency by shielding data 
from direct access and allowing access only through method 
interfaces ensuring that invariants hold when control is 
passed back to the caller. Verification of this enforcement 
mainly has to consider the contents of a class. However, as 
behaviour may be modified by sub-classing, verification still 
has to be repeated for each new subclass. 

Also, the object-oriented model coincides with that of 
many wide-spread modelling concepts such as UML, which 
may ease the transition from model to implementation.  

class A { 
public: 
 virtual void doSomething() = 0; 
}; 
class B: public A { 
public: 
 virtual void doSomething(); 
} 
void foo(A* obj) { 
 return obj->doSomething(); 
} 
int bar() { 
 A* obj = new B; 
 return foo(obj); 
} 

class A { 
public: 
 int getSomething(); 
 virtual int calcSomething(); 
}; 
class B: public A { 
public: 
 int getSomething(); 
 virtual int calcSomething(); 
} 
int foo(A* obj) { 
 return obj->getSomething()+ 
     obj->calcSomething(); 
} 
int bar() { 
 A* obj = new B; 
 return foo(obj); 
} 

Fig.  III-4 Dynamic Dispatch 

Fig.  III-3 Abstraction 



Object-oriented paradigms are well-suited for application 
software. This is not only true for graphical user interfaces 
and similar application concepts, which are usually not part 
of space on-board software, but also, for example, for data 
processing applications. The existence of a large number of 
class and template libraries for this purpose is evidence for 
this[5][6][7]. 

However, for the hardware interface level of a space on-
board system usually a component-based architecture is 
more suited due to the fact that the hardware of a spacecraft 
does not change during the mission. This is different from, 
e.g., a desktop computer, where peripheral hardware may be 
added and removed multiple times during the lifetime of the 
system or even during a single workday. 

Thus, mapping the component-based architecture for the 
hardware interface level to an object-oriented 
implementation language will either degrade to an 
imperative approach – e.g. using only an imperative subset 
of C++ – or at least feel forced. 

Consider, for example, the implementation of a driver for 
a serial interface. If it is implemented as a class, with each 
object representing one serial interface, the number of 
instances is clearly limited and fixed for a given hardware 
setup. 

However, one basic assumption of a class-based object-
oriented system is that the number of instances and their 
lifetime are indefinite and unknown at the time the class 
definition is being compiled. 

For this reason alone the compiler will introduce an 
element of indirection, addressing object data and possibly 
object methods indirectly via an implicit object pointer 
(“this” in C++ and Java). 

This indirection – and the use of function pointers – 
could in some cases conflict with industry standards for 
critical software, such as DO178 which disallows dynamic 
objects. 

It should be noted that the Singleton Pattern[8] does not 
get rid of the indirection, but instead only places the instance 
and its instantiation under the control of the class itself. 

In C++ the declaration of all methods and data in the 
class as static would allow the developer to get rid of the 
indirection. However, now the management of instances 
would be left to the developer, just as it was in Ada and C. 
The resulting class would very much resemble an Ada 
package. The only difference from a simple C 
implementation is the use of the class as a distinct 
namespace and the possibility of data-hiding. 

C++ as a language has several specific advantages over 
its historical predecessor C, in addition to those introduced 
by its object-oriented nature. 

C++ has a stricter type system in place and allows for 
enforcement of stricter type checking in various situations, 
which is also needed for proper overload resolution. 

For example, while enumeration types were implicitly 
mapped to integer types in C, they are their own type 
category in C++, albeit with an implicit type conversion to 
integer. 

Also, by declaring a parameter with type “reference to 
array of T” it is possible to avoid the usual implicit 

degradation of an array to “pointer to T”. Otherwise this 
degradation leads to loss of information about the original 
array, such as its size. 

Templates allow quite type-strict generic 
implementations of containers and algorithms, for example. 
Partial specialisation is a powerful tool for optimisation and 
even for small amounts of automatic code generation. 

However, the principles for finding the matching 
specialisation for a given instance of a template define a 
Turing-complete language. In other words: Partial 
specialisation and matching of templates in C++ provides a 
whole programming language which is executed at runtime. 

While all these features allow for many interesting 
applications[9], as a consequence the code may be very 
difficult to review, to verify and test. 

For example, the symbols “<” and “>” are overloaded in 
the context of declarations and uses of templates, which 
impacts readability due to syntactic ambiguities. 

Consider the term “T<a<b,c>::d>”, which is clearly an 
instance of template “T”. However it is not as clear what the 
arguments are. 

It is possible to read the only argument being an 
enumeration constant “d” declared in the template instance 
“a<b,c>”. 

An alternative interpretation would be two arguments, 
one being the boolean result of the comparison “a<b” of two 
constants “a” and “b”, and the second being the boolean 
result of the comparison “c>::d” of two constants “c” and 
“d”, where “d” is explicitly stated to be declared in the root 
namespace. 

Without knowing what “a”, “b”, “c” and “d” are it is not 
possible for the reader to determine the actual syntactic 
structure of the term. 

To make matters worse, the current C++ standard[10] 
adds “>>” into the mix of overloaded symbols. This is 
relevant when the last parameter to a template instance is 
itself a template instance specification, such as in  

“S<T<U> >”  
here written in the way required by older C++ standards, 
with a space in between the two closing angle brackets. The 
new standard also allows to write this as “S<T<U>>”, 
without a space between the angle brackets. 

However, an advantage is the implicit combination of 
declaration and initialisation of variables: Whenever a class-
type variable is declared, it is initialised either by an explicit 
initialiser or constructor call, or by an implicit call to the 
default constructor. 

This default constructor may under specific 
circumstances be a so-called defaulted default constructor 
which initialises all member elements to their default values 
according to their type. 

Finally, function and operator overloading may help in 
making the code more readable by adopting a mathematics-
like notation, e.g., for quaternion, vector or matrix 
operations. 

However, many of the implicit elements of C++ 
semantics may also lead to less comprehensible code. 



For example, assignments to variables of class type may 
implicitly call a copy-constructor or operator, as may return 
statements with objects of class type. 

Constructors accepting a single argument of a given type 
may be used as implicit conversion operators, except if they 
are marked as “explicit”. 

Further, the comprehension of overloaded operators 
depends on the reader performing the overload resolution 
properly, while in C the name of the function to be called is 
unique. Although in case of functions with static linkage, 
there could be more than one function of the same name in 
an application. 

Consequently, regarding critical software and related 
standards, a subset of C++ and proper design patterns should 
be defined. 

V. TEST CHALLENGES IN OBJECT-ORIENTED LANGUAGES 
Some typical features of object-oriented languages 

present specific challenges to testing in general and 
automatic generation of input data for test and stimulation in 
particular challenging. 

A. Encapsulation/Data Hiding 
In case of C++ encapsulation in the sense of data hiding 

is achieved by declaring object members as protected or 
private, the difference between the two being whether the 
members are visible to subclasses or not. 

While in Ada and C, all possible values/states of a record 
(Ada) or structure/union (C) could be generated by 
recursively filling the fields of the record, structure or union 
with values of the appropriate type, encapsulation implies 
that this is not generally possible for objects of class type. 

Clearly one could simply modify the source code 
automatically in such a way to remove the encapsulation for 
sake of stimulation. 

However, besides simply hiding the object state and its 
representation from object users, encapsulation is also 

typically used to ensure a consistent representation of the 
state of an object. 

Consider, for example, an object, the state of which is 
represented internally by two fields of integer type. The 
specification defines that, while any of both fields may be 
negative, their sum must be positive. Consequently, 
constructors and methods must not produce inconsistent 
object states. 

Now consider the case where both fields are randomly 
initialised without considering the constraint: In about half of 
the cases, the values selected would not satisfy the constraint 
given in the specification. 

While the values not satisfying the constraint are of 
interest in terms of robustness testing – which includes 
testing for robustness against invalid input data –, it is 
typically not desirable to spend about half of the stimuli on 
robustness testing alone. 

Such constraints are not known to the test tool, except if 
provided explicitly in a form usable for automatic generation 
of applicable data, e.g. in any machine-comprehensible form, 
which – so far – is rarely the case. They also cannot be 
extracted from the source code in general due to Rice's 
Theorem, an extension of the Halting Problem, which states 
that for any non-trivial property there is no algorithm that 
can determine whether a given program has that property. In 
this context “non-trivial” means that there is at least one 
program that has the property and at least one that does not. 

It is therefore reasonable to use the declared constructors 
for generating objects for stimulation with what according to 
the implementation should be consistent states. Only 
specifically for robustness testing the concepts of 
consistency as implemented in the software should be 
ignored. 

However, it is not guaranteed that all possible states of 
the object can be reached this way. One simple example of 
this are objects implementing a finite state machine which 
always starts in the same initial state after construction. 
Except if the state machine is degenerate, there must be more 
than this one initial state, and by construction these other 
states cannot be reached from calling the constructor alone. 

The only other way of manipulating the state is by using 
the methods of the object. 

In case of pure finite state machines theory dictates that 
the number of transitions required to reach any given, 
reachable state is finite. However, although the state space 
may be finite, it may still be too large. 

Thus the construction of an object requires invocation of 
the constructor followed by a sequence of method 
invocations, the length of which is unknown without 
additional information. 

To further complicate the issue, the construction of 
objects may be recursive in that the constructor itself or the 
methods invoked afterwards may require data of class type 
as parameter. 

For an example, consider Fig.  V-1. The class declared in 
this example represents a simplified stream or rather, a first-
in-first-out-buffer (FIFO). Initially the FIFO is empty, i.e. no 
data has been written to the stream and – consequently – no 
data has yet been read from the FIFO. 

class Stream { 
public: 
 Stream():readPtr(0),writePtr(0) {} 
 void read(char* data, 
            unsigned int size) { 
  if (readPtr+size>writePtr) { 
   /* error */ 
  } 
  … 
  readPtr+=size; 
 } 
 void write(const char* data, 
             unsigned int size) { 
  … 
  writePtr+=size; 
 } 
protected: 
 char* buffer; 
 unsigned int readPtr; 
 unsigned int writePtr; 
}; 

Fig.  V-1 Challenge Data Hiding 



class A { 
public: 
 virtual void foo(); 
 void bar() { 
  … 
  foo(); 
  … 
 } 
}; 

Fig.  V-2 Library Class A 

class B: public A { 
public: 
 void foo() { 
  ... 
 } 
}; 

Fig.  V-3 Application Class B 

Wanting to test the method read, one would have to fulfil 
the condition that there are at least as many bytes available in 
the stream as shall be read. Clearly, this is not the case 
directly after construction for any case in which the 
parameter size passed to read is greater than zero. 

There is no constructor that would allow the stream to be 
initialised to any state other than the empty state. The only 
way to create a pre-filled object is to construct one with the 
default constructor and to call write with the appropriate 
parameters. However, for all practical purposes, without 
annotations a software tool can only guess this connection. 

B. Subtype Polymorphism 
Subtype polymorphism is not specific to object-oriented 

languages. For example, it is possible to use a value of type 
“unsigned short” for a parameter of type “unsigned int” in C. 
In Ada it is possible to declare subtypes of scalar types, e.g. 
with reduced value range. 

However, neither Ada nor C allow declaration of 
subtypes of record (Ada) or struct/union (C) kind. 

While in the subtyping scheme of Ada, the total range of 
values is given by the topmost scalar supertype and subtypes 
can only select a subrange of this total range, every subclass 
S of a superclass T extends the set of objects applicable as 
values of type S. 

This is true even if S does not introduce any new object 
fields, as S may introduce variants of implementations for 
the methods of the class. Thus the objects of type S may 
behave differently from the objects of type T. 

Consequently, when generating an object of type T, also 
all subclasses of T have to be considered for testing. 

C. Dynamic Dispatch 
Due to dynamic dispatch, subclasses may modify the 

behaviour of superclass methods, even of those that are not 
overridden. 

As an example, consider Class A declared in Fig.  V-2. 
This class declares a method foo subject to dynamic dispatch 
and a method bar that uses foo. Whether bar is subject to 
dynamic dispatch or not is not relevant for this example. 

Assume that Class A is declared in a class library used by 
an application and the application declares Class B shown in 
Fig.  V-3. Class B overrides foo. As foo is subject to dynamic 
dispatch, an invocation to bar on an instance of Class B may 
show different behaviour than for instances of Class A itself. 

No amount of verification on the class library can ensure 
that the guarantees associated with Class A still hold in the 

context of the application, except if derivation of subclasses 
by the application is prohibited and properly checked. 

D. Templates 
A challenge more specific to C++ as a language is 

template programming. The combination of partial and 
complete specialisation with the pattern-matching provided 
by the C++ template mechanism is in itself a Turing-
complete language with programs being executed at 
compile-time by the compiler. 

This specific feature of C++ has led to a large set of 
generic template libraries, including the Standard Template 
Library defined by the C++ standard itself, containing 
definitions and implementations of various generic container 
classes and algorithms. Other examples are the Boost[5] and 
LOKI[7] libraries or the Computational Geometry 
Algorithms Library (CGAL)[6]. 

The specifically practical challenge regarding 
information extraction from source code lies in the effort 
required for implementation of an appropriate parser which 
is able to properly understand template declarations and to 
apply pattern matching as specified in the standard on 
template instantiations. 

However, a more conceptual issue arises for templates, 
similar to that resulting from dynamic dispatch and subtype 
polymorphism: The issue of determining the candidate types 
for type parameters. 

While for parameters of class type in functions and 
methods it is straightforward to determine the candidate 
subtypes from the subclass relationship explicitly specified 
by a language construct specifically designed for this 
purpose, it is difficult or even impossible to determine which 
types would be eligible for a type parameter of a template. 

The template may place constraints on the interface and 
behaviour of the type parameter. For example, CGAL 
provides a template to define what is called a kernel, 
providing operations for defining and manipulating 
polyhedra with a given type of vertex, edge and face. 
Instances of the polyhedron-template require a structure as 
type parameter which mainly contains type definitions for 
the vertex, edge and face types. The names of these types are 
fixed. Further, there is a set of operations that are required to 
be possible with objects of these types. 

If one tries to instantiate this template using a type 
parameter that does not satisfy these constraints, compilation 
errors may occur, but do not necessarily occur. Depending 
on how the compiler instantiates the templates, errors may 
only occur when a method of the template instance is used 
which – when instantiated with the given template 
parameters – is semantically incorrect. 



class Singleton { 
private: 
 Singleton() { … } 
public: 
 static Singleton* getInstance() { 
  if (!instance) { 
   instance = new Singleton(); 
  } 
  return instance; 
 } 
private: 
 static Singleton* instance; 
}; 

Fig.  V-4 Singleton Pattern 

Besides the complexity of implementing an appropriate 
parser and semantic analyser, it would seem straightforward 
to simply try all types present in the application or library as 
type parameters wherever type parameters are required. 

However, template instances themselves are types and 
would therefore be eligible themselves as type candidates 
under such a scheme. The set of candidates to be evaluated 
could therefore be infinite in the presence of templates. 

E. Stubbing of Constructors 
Automated testing may require stubbing of functions and 

– in the object-oriented case – classes. The reasons may 
vary. 

In early stages of implementation there may be parts of 
the software that are not yet implemented. There also have 
been cases where only the interface declarations but not the 
implementation – neither in source- nor in object-code – was 
available. A useful strategy for approaching the automated 
test of a large software package is also to exclude part of the 
implementation and limit the actual test to a subset of the 
package. 

With object-oriented languages such as C++ it may be 
necessary to also stub constructors. These are special 
functions that are intended to set up an object for its initial 
state, possibly depending on input parameters. 

Let us assume for a moment that we are talking about 
stubbing a default constructor, i.e. a constructor that does not 
require any parameters. 

In that case the constructor to be generated needs to 
ensure that inherited portions of the object are initialised by 
calling a constructor of each superclass, and that fields 
introduced by the class itself are properly set up. 

In C++ this is done using initialisation lists, which are 
placed immediately before the actual body of the constructor. 
The rationale for this separation from the actual body is that 
the object should be in a defined state already upon entering 
the body. 

For example, to call the constructor of a superclass, the 
name of that superclass is given, followed by the parameters 
to the constructor in parentheses. Similarly, to initialise a 
field, the name of the field is given, followed either by the 
value for the field or by parameters to the constructor if the 
field is of class type. 

As any class may have more than one declared 
constructor, each of which may lead the object to be 
initialised in a different state, representative testing would 
require to ensure that the constructor being called is actually 
the constructor that is to be called in the final 
implementation. However there may be no information 
available on which constructor this is. 

In other situations where definitive information is not 
available, automated source-code-based testing falls back to 
randomness or iteration over the whole set of possible 
alternatives. 

In this case, however, it is only possible to select one 
constructor statically at the time of generation of the stub. 

Now let us consider the more complex case, where the 
constructor to be stubbed receives arguments. 

Usually, these arguments are used to initialise the fields 
of the object. This initialisation is not necessarily direct in 
that the value of a parameter is directly written to an object 
field. 

Instead, intermediate calculations may be carried out and 
the parameters or the results of these calculations may even 
be used as parameters for further constructor calls, e.g. for 
super-class or field constructors. 

The stub generator cannot know the correct way of 
transforming the parameters into inputs for the constructors 
called. 

F. Use of Design Patterns 
Some design patterns require special handling in test data 

generation and in testing. One prominent example is the 
Singleton Pattern[8], shown in Fig.  V-4. The purpose of the 
singleton pattern is to ensure that only a single instance of a 
given class exists in a given context. For example, there may 
be a single instance per thread or a single instance for the 
whole application. The singleton instance provides control 
over the single-instance-criterion and simple access to the 
appropriate instance. 

Use of the Singleton Pattern may be criticised from an 
architectural and design point of view – e.g. for increasing 
coupling, an attribute unwanted in object-oriented design, or 
for making construction order less predictable – the 
challenge for testing does not arise from the design issues, 
but rather from the form how the Singleton Pattern is often 
implemented. 

In order to enforce the single-instance-rule, construction 
of other instances has to be prohibited. This is usually 
achieved by hiding all constructors of the respective class 
and introducing a static class-method – e.g. named 
getInstance() – to return the single instance. The hidden 
constructors are visible to that class method, so it is able to 
construct an instance, but no part of code outside the class 
can do so. 

Notably, in most languages there is no explicit language 
support to distinguish such construction methods from other, 
non-construction methods. They are not constructors in the 
meaning that term has in the language, as a visible 
constructor could be used to violate the single-instance-rule. 
They have to be declared and defined in the same form as 
any class-method is expressed, although they are introduced 



class A; 
class B { 
public: 
 B():val(0) {} 
 int getVal() const { return val; } 
 int calcVal(int x) { val=x*x+2*x+5; } 
 bool operator==(const B& other) const { 
  return (other.val % 7) == 
   (val % 7); 
 } 
private: 
 int val; 
}; 
B* foo(A* obj); 
enum verdict_t testFoo_123() { 
 A* input_obj = new A(...); 
 B* ret = foot(input_obj); 
 B* refValue = new B(); 
 refValue->calcVal(???); 
 if (*refValue==*ret) 
  return success; 
 else 
  return failure; 
} 

Fig.  V-5 Regression Testing

with a very specific intent, and this intent is important for 
test data generation. 

A test data generator may at some point find that the FUT 
or some other function which has to be called for test 
preparation requires an instance of the singleton class to 
work on. All of the relevant constructors of that class are 
hidden, so the data generator has no possibility to construct 
an instance in the classical way.  

A similar situation may arise with the Abstract Factory 
Pattern, the Factory Method Pattern, the Prototype Pattern or 
the Builder Pattern. All of these share the feature of 
introducing an additional level of indirection in creation of 
objects, with the actual mechanism of construction not being 
apparent from the syntax for a program analysing the code. 

G. Generation of Regression Test Suites 
The process flow of execution of a single regression test 

cases consists of the following steps: 
1. Construction of the input data 
2. Invocation of the function-under-test 
3. Comparison of the actual output to the expected 

output 
4. Recording of the input and output data for 

repetition of the test 

As in the FAST-process applied by the authors the test 
generator shall require no additional information about the 
application, the generator also has no knowledge about the 
expected output. Instead, test stimuli prompting an 
interesting response by the function-under-test are collected 
and regression test drivers are generated based on the input 
stimulus and the actual output observed. To allow testing 
against a specification, the observed outputs have to be 
manually verified regarding the contents of the specification. 
Otherwise, the regression test can only be used to observe 
changes in the behaviour of the software between versions. 

When generating regression test suites from 
automatically generated test data, the first two steps in the 
regression test process are straight-forward to handle. After 
all, the input data has been constructed before and the way it 
was constructed is known and can be transformed into code 
that repeats this process. The generation of an invocation 
expression or statement also poses no special implementation 
challenges. 

However, the third step is much more complicated. The 
approach so far for C has been to iterate over the structure of 
the observed output data and generate matching statements 
comparing the output observed in the test data generation run 
to the output observed during the execution of the test driver. 

But this is not a mechanism for logical comparison in any 
case. For example, in case of a container type such as a tree 
or a hash set, equality is defined in terms of objects 
contained in the container rather than of the actual values of 
record elements used to represent the set. 

A very much simplified example is given in Fig.  V-5. 
Here, a function foo expects an instance of class A and 
returns an instance of class B. 

The objective of the regression test is to 

1. generate the instance of A in just the same way 
as it was generated during the stimulation run, 

2. pass it to foo, 
3. record the instance of B returned, and 
4. compare the state of that instance to the state of 

the instance returned during the stimulation run. 

As previously explained, Steps 1 to 3 are straightforward 
to implement. Step 4 is the difficult part of the process. 

The instance of B was generated by the function-under-
test in the stimulation run, so the way its state was achieved 
is not known to the test-tool. 

The state variables are hidden from the outside, and the 
behaviour of the function setVal is clearly not useful to re-
establish the state, as it does not set val directly, but rather 
indirectly via some calculations. In the practical case, these 
calculations may be arbitrarily difficult to reverse. Thus it is 
not possible to use setVal to re-establish the previously 
observed state. 

Further, it is unclear what notion of equivalence or 
equality shall be used to compare the newly observed to the 
reference value. In this case, the comparison operator was 
redefined to represent a notion of equivalence, not equality. 
It may be that in this specific case, this notion of equivalence 
is not applicable, but rather direct equality or another concept 
of equivalence was intended to be used. 

So neither is there an obvious way of providing a copy of 
an output object to use for logical comparison using 
appropriate user-provided comparison methods, nor is it 
generally possible to at least implement a structural 
comparison due to the presence of hidden data. 

H. Inaccessible Types and Methods 
Classes may contain declarations for methods and types – 

including other classes – that are marked to be hidden. In 



Java and C++, these may be declared as private or protected, 
and thus are inaccessible to any code or declarations outside 
designated portions of the software. 

These private methods are often internal helper functions 
used to add better structure and separation of concerns to the 
implementation of the functionality specified for the public 
interface of the class. 

As such, they may violate invariants defined on the state 
of the class, as long as these violations are resolved before 
execution leaves the domain of the class again. 

Depending on the test strategy, tests of these internal 
methods may be desired or not. 

In a black-box strategy, the main focus is on testing 
whether a class performs as specified when using its public 
interface. The internal methods may be seen as 
implementation detail that is invisible to the user anyway. 

In a white-box strategy, individual tests of these internal 
methods may be desirable. 

For example, any faults being observed in a test of the 
public interface may come from defects either in the public 
method or in any of the internal methods called from there 
directly or indirectly. Localisation of the defect may thus be 
difficult. Testing the internal methods bottom-up instead 
may reduce the localisation effort for any defects to be 
found. 

VI. CONSEQUENCES AND SOLUTIONS 

A. Encapsulation/Data Hiding 
There seems to be no solution which does not risk to 

either systematically exclude a significant portion of the state 
space of an object or to produce large numbers of duplicate 
inputs or long sequences of idempotent or otherwise 
superfluous method invocations, without at the same time 
requiring additional information that is to be supplied 
manually in a formal manner usable by a software tool. 

For example, one could specifically mark methods that 
have no effect on the object. These would not be considered 
when generating a sequence of method calls intended to 
manipulate the state of the object. 

In C++, these can be marked by using the qualifier const 
after the method prototype. However, it is not unusual to find 
a similar method with the same name and without const-
qualifier in the same class. 

This is often the case in getter-methods that provide 
access to a sub-object by passing a reference to that object to 
the caller. In the const-qualified case, the referenced object is 
const-qualified itself and thus cannot be modified by the 
caller. In the non-const-qualified case, the const-qualifier is 
also missing on the referenced object, and thus the caller can 
modify that object. 

Still, the getter-method itself does not affect the state of 
the object, but instead only returns a reference to part of it 
for the caller to potentially modify. 

Another way of restricting the set of sequences of method 
calls would be specification of a protocol state machine. 
Such a machine would formally specify the order in which 
the methods may be called in the nominal case, and may 

even specify constraints on the values the methods may be 
passed. This form is often used in model-based testing. 

B. Subtype Polymorphism/Dynamic Dispatch 
As a consequence of dynamic dispatch in combination 

with subtype polymorphism, it is not possible to use 
evidence collected in testing a class library to deduce the 
reliability of that class library when used in an application. 

An application may use a class library, for example, by 
deriving its own subclasses from classes in the library.  In 
some cases a class provided by the library may be abstract, 
but no concrete subclass may be provided in addition. In that 
case, the application is even forced to provide its own 
subclass to be able to make use of the functionality. 

There the set of all subclasses of a class cannot be known 
– neither in the automatic nor in the manual case, as would 
be required for representatively generating objects of class 
type. 

This is not necessarily different from C, as dynamic 
dispatch can be implemented in C as well using function 
pointers. 

However, in object-oriented languages dynamic dispatch 
and subtype polymorphism typically are important parts of 
the language. They may even play a crucial part in the 
decision for an object-oriented over an imperative language. 

Thus any attempt to prohibit the use of these features to 
avoid the difficulties in testing would very probably be 
subject to strong criticism. 

As a minor consequence of subtype polymorphism and 
dispatch, a unit actually is a complete class, including all 
methods that are inherited from superclasses. The change of 
behaviour may affect inherited methods, so that these have to 
be re-tested in context of any subclass. However, that is not a 
consequence specific to automatic test data generation. 

C. Templates 
To solve the issue of candidates for template type 

parameters, considering only those concrete instances used 
in the application seems to be the most straightforward 
solution. 

This also fits the approach of only considering complete 
applications. The template instances used in the application 
can be considered to be unique classes, as if they were 
defined without the use of templates. 

D. Use of Design Patterns 
Short of requiring manual annotations, the main 

possibility of handling construction patterns seems to be the 
use of heuristics. 

The patterns most relevant to automatic test data 
generation seem to be construction patterns. These have in 
common that there is some method or function that provides 
an instance of the relevant class. 

There are some issues with this heuristic. First of all, it 
includes getter methods. After all, the existence of the 
Abstract Factory Pattern requires that a tool also considers 
object methods as possible constructors. However, getter 
methods may return an object of the desired type, but that 



object might have been supplied earlier to the constructor of 
the object on which the getter method would be invoked. 

One option would therefore to exclude all methods that 
directly or indirectly require an instance of the respective 
type for invocation. This way, however, one might exclude 
implementations of the Factory Pattern that use another 
instance of the respective type as a template for the object to 
be created. This issue is similar to the problem of achieving 
different states of an object by calling a constructor and a 
sequence of methods, as discussed in Sect. VI.A, and 
therefore the same solution approaches may apply. 

As another complication, the return value of a function 
might not be the only way to pass outputs to the caller. 
Parameters passed by-reference or even more complex 
encapsulations of outputs may be another possibility. 

For example, a function in C++ may declare a parameter 
to be a reference to a pointer to class T, which may be used 
to pass a newly created instance of T to the caller. However, 
without additional information a tool cannot distinguish 
whether the parameter is bidirectional (input-output) or 
output only. Thus, the decision on whether the function 
requires an instance of the relevant type as input cannot be 
made. 

Further, at least theoretically it is possible that the 
instance is passed to the caller encapsulated in another 
object, e.g. when multiple objects are created at once. This 
may be necessary, e.g., due to structural invariants such as a 
group of objects each having a link to each other. Obviously, 
any sequence of generating these objects would breach the 
invariant at least temporarily. The reason for use of the 
Abstract Factory Pattern may be that this temporary violation 
of the invariant shall be kept hidden from the caller. 

Thus, any of these approaches to automatic identification 
of constructor methods that are not constructors in the 
language sense will necessarily be a heuristic and most 
probably exclude some of such constructor methods from 
consideration. 

E. Inaccessible Methods and Types 
As already mentioned in Sect. V.H, this problem might 

be solved by simply stimulating only on public interfaces 
and assuming that the internal methods are tested in that 
context as well. The degree of coverage achieved is 
measured in context of the FAST process and thus gives a 
feedback on what was tested. 

However, if the test strategy required testing of internal 
methods as well, there are at least three options: 

•  declaring the relevant functions from the test 
environment to be friends of the relevant class 
(possible in C++), 

•  declaring the test functions as part of the relevant 
class, 

•  modifying the class declarations so that the relevant 
elements are public. 

All of these options require modifications to the source 
code for the purpose of the test. These modifications may be 
temporary in that they are only present during test, but the 

software product as delivered stays unchanged. Fortunately, 
it is possible to automate these modifications. 

The first alternative is possible at least in C++. Declaring 
a function to be a friend of a class allows that function access 
to private and protected members of that class, thereby 
removing the limitation for the test environment. 

In languages which do not provide a feature comparable 
to friend-declarations, the other alternatives may apply. A 
function that itself is a member of a class also has access to 
all the other members of the same class, independent of 
whether they are private, protected or public. 

The third alternative achieves the same, but makes the 
relevant members accessible even to functions outside the 
class scope. 

At least in C++, this rather drastic modification is not 
expected to change the behaviour of the software. Such a 
change could only occur if due to the increased accessibility, 
overload resolution – i.e. the selection of the operator, 
method or function to be called from a set of candidates of 
the same name – would now result in different callees being 
selected in parts of the code. 

However, at least in C++, visibility and accessibility are 
separate concepts: All members of a class are visible at all 
points of the code, and as such are all considered in overload 
resolution. Once overload resolution has resulted in a single 
remaining candidate member, accessibility is checked. 
Therefore, the set of candidates is not changed by changing 
the visibility of the members. 

The same may apply for other languages. 

F. Conclusions 
The solutions discussed above – requiring manual 

intervention – are not a matter of test automation and of the 
FAST process, but of manual, traditional testing as well. 
However, in context of  such a high degree of automation 
manual intervention is not the preferred solution, but in some 
cases a constraint which cannot be avoided – at least 
currently. The challenge for the FAST process is to find and 
propose more efficient solutions. 

VII. IMPLEMENTATION AND TESTS 
The issues as discussed above in Ch. V require a 

staggered approach to extend the FAST process from C to 
C++ under consideration of what typical space software 
needs and how it could best benefit from the features of the 
FAST process. 

A. Steps of Implementation 
Therefore the extension of the FAST process from C to 

C++ shall be performed in the course of the following steps. 
In a first step – very close to finalisation – the basic 

features shall be supported as required for identification of 
sporadic faults complementing the standard test process: 

•  Massive stimulation 
•  Fault injection 
•  Stubbing of missing functions / methods including 

constructors and destructors 



•  Provision of filtered lists on anomalies pointing to 
potential faults 

with the following limitations: 
•  Support of visible, public methods only,  
•  No parsing of templates. 

In the next steps shall be supported 
•  information hiding and encapsulation 
•  templates. 
•  procedures to step through the state space, and finally 
•  regression testing. 

The effective schedule for implementation of next 
features will be driven by the needs of the application 
software. 

B. Implementation 
In its current shape the extension of the FAST process to 

support C++ software does – in addition to the features 
already supported for C 

•  extract information from C++ source code 
according to the C++ Standard 201112 without 
supporting templates 

•  instrument the source code for coverage 
analysis, fault injection, supporting the later 
extension to cover encapsulation, 

•  generate stubs for missing methods including 
instantation of a concrete subclass if a class is 
abstract, recursively considering superclasses 
and subclasses 

•  generate test stimluli for C / C++ types 
including calls of associated constructors, 

•  call methods including random selection of 
overloaded methods at run-time. 

Based on the extracted information more context 
information is derived, addressing correlation of information 
across compilation units, because generation of the test 
environment requires more information than compiler and 
linker need. E.g. for an abstract (super-)class concrete 
methods may be provided in separate compilation units, i.e. 
in the compilation unit of the super-class nothing it known 
about its sub-classes. To test the methods of the super-class 
all concrete methods of its sub-classes must be executed.  

C. Tests 

Tests have been applied to a software package intended 
for use for an experiment on the International Space Station 
ISS. The application shall run under Linux. Its properties are: 

•  302 hpp-files 
•  229 cpp-files 
•  643 public methods 
•  53200 physical lines 
•  22600 LOC 

Out of these 643 methods 135 – provided in 20 files 
respectively abstract classes – require more derived context 
information on concrete subclasses to test them. Tab.  VII-1 

shows quantities on classes as occurring in the parsed 
application files. The second colum refers to classes, class 
templates, structures and unions defined in the set of 
application files, the third colums to all files considered. 
Latter set of files refers to the application files plus the h-
files from Boost and Loki and some h-files from Linux – as 
required  by the application. 

Item Application Files 
Only All Files 

Classes 279 325

Structures 55 176

Unions 0 15

Class Templates 364 469

Total 698 985

Tab.  VII-1: Profile of Classes 

The GNU compiler g++ 4.7.2 has been applied for 
compilation and testing of  the software. 

The test generation process has been applied to this 
software package and the 643 methods. 

Evaluation of the test results has just been started, mainly 
focusing on verifying correctness of the test process and 
report generation, taking the results for improvement of the 
test process, and minimisation of false alarms. When this 
phase is finished, analysis of the report for issues in the 
software under test  will start. 

VIII. CONCLUSIONS 
The issues for implementation of an automated test 

process which takes its information from source code or 
other machine-readable information – if provided – are much 
more challenging for object-oriented languages like C++ or 
Java than for imperative languages like C or Ada. Such an 
automated process requires much more information than 
what is needed for compilation and linking the source code 
to get an executable test environment. Information from 
different compilation units may have to be combined to get a 
full overview on the correlations. 

The power of C++ or of an object oriented language 
respectively implies that the mapping between a statement in 
source code onto assembler code is much more complex and 
extensive than in C. E.g. in C a return may be covered by a 
short sequence of assembler instructions, while in C++ a 
cascade of operations may be executed, including implicit 
calls to destructors and copy/move operators.. 

Further, the dynamics related to sub-classing, 
overloading and dispatching generates a huge number of 
combinations which have to be considered in advance when 
building the test environment. 

However, what is a big challenge for implementation of 
such an automated process, also applies to manual test 
preparation. The huge number of cases to be considered 
suggest that a test engineer only can achieve a very small 
coverage figure w.r.t. what should be covered, especially 
regarding overloading and dispatching.  



In consequence, the high dynamics of object oriented 
software and the huge number of possible execution paths  
which come on top of the huge number already of imperative 
programming – suggest that an automated process is required 
such as FAST to achieve a sufficient degree of coverage. 
Although such an automated process never will perfectly 
reach the required coverage, it will reach more than what can 
be achieved when manually building the test environment. 

An automaton can extract information from the source 
code much more efficiently than an engineer and correlate 
and synthesize it to what is required for generation of the test 
environment, which results in derivation of more 
combinations for testing. 

The current status of implementation shows that the 
FAST process can be applied to object-oriented languages 
like C++, too, and it forms the base for further extension 
towards more C++ features. In its current status the FAST 
process can support fault identification in C++, especially 
tackling sporadic faults, as it did in the past for C software, 
for quantities of source code as produced in real projects. 
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